Chebyshev with a Bitcoin illustration

Chebyshev inequality

In this short note, we show how to use the Chebyshev inequality on a financial asset. It will help predict the probability of an extreme return. To do so, we focus on the Bitcoin prices.

In this exercise, we shall do the following:

- 1. Compute the returns of a financial asset
- 2. We compute the Chebyshev inequality for any chosen next return.

First, we load the data and plot the BTC prices.

```
url = "https://raw.githubusercontent.com/adufays/GDP_expectancy/main/DATA_BT.csv"
DATA = read.csv(url)
date = DATA$date
BT_price = DATA$BT_price
plot(BT_price)
```


[1] "2020-10-13" "2020-10-14" "2020-10-15" "2020-10-16" "2020-10-17"

##	[6]	"2020-10-18"	"2020-10-19"	"2020-10-20"	"2020-10-21"	"2020-10-22"
##	[11]	"2020-10-23"	"2020-10-24"	"2020-10-25"	"2020-10-26"	"2020-10-27"
##	[16]	"2020-10-28"	"2020-10-29"	"2020-10-30"	"2020-10-31"	"2020-11-01"
##	[21]	"2020-11-02"	"2020-11-03"	"2020-11-04"	"2020-11-05"	"2020-11-06"
##	[26]	"2020-11-07"	"2020-11-08"	"2020-11-09"	"2020-11-10"	"2020-11-11"
##	[31]	"2020-11-12"	"2020-11-13"	"2020-11-14"	"2020-11-15"	"2020-11-16"
##	[36]	"2020-11-17"	"2020-11-18"	"2020-11-19"	"2020-11-20"	"2020-11-21"
##	[41]	"2020-11-22"	"2020-11-23"	"2020-11-24"	"2020-11-25"	"2020-11-26"
##	[46]	"2020-11-27"	"2020-11-28"	"2020-11-29"	"2020-11-30"	"2020-12-01"
##	[51]	"2020-12-02"	"2020-12-03"	"2020-12-04"	"2020-12-05"	"2020-12-06"
##	[56]	"2020-12-07"	"2020-12-08"	"2020-12-09"	"2020-12-10"	"2020-12-11"
##	[61]	"2020-12-12"	"2020-12-13"	"2020-12-14"	"2020-12-15"	"2020-12-16"
##	[66]	"2020-12-17"	"2020-12-18"	"2020-12-19"	"2020-12-20"	"2020-12-21"
##	[71]	"2020-12-22"	"2020-12-23"	"2020-12-24"	"2020-12-25"	"2020-12-26"
##	[76]	"2020-12-27"	"2020-12-28"	"2020-12-29"	"2020-12-30"	"2020-12-31"
##	[81]	"2021-01-01"	"2021-01-02"	"2021-01-03"	"2021-01-04"	"2021-01-05"
##	[86]	"2021-01-06"	"2021-01-07"	"2021-01-08"	"2021-01-09"	"2021-01-10"
##	[91]	"2021-01-11"	"2021-01-12"			

Now, we compute the returns in percentage and have a look at them.

```
T = length(BT_price)
ret = 100*(BT_price[2:T]-BT_price[1:(T-1)])/BT_price[1:(T-1)]
plot(ret)
```



```
(mean_ret = mean(ret))
```

[1] 1.261616

```
var_ret = var(ret)
(sqrt(var_ret))

## [1] 3.6754
CI_Norm = data.frame(cbind(mean_ret-1.96*sqrt(var_ret),mean_ret+1.96*sqrt(var_ret)))
rownames(CI_Norm) = c('CI 95%')
(CI_Norm)

## X1 X2
```

CI 95% -5.942168 8.4654

We observe that the standard deviation is large as it is equal to 3.67. Assuming a Normal distribution, the 95% confidence interval leads to returns from -6% to 8.5%. Now, we use the Chebyshev inequality to get an idea of what could be the range of the next return (assuming that the variance is constant).

```
n = 10 ## One percent
a = n*sqrt(var_ret)
prob_chebyshev = var_ret/a^2
paste("A return being greater than (in absolute value) ",a, " has a probability of occuring tomorrow th
```

[1] "A return being greater than (in absolute value) 36.7539992266237 has a probability of occurin